石墨烯
在2015年石墨烯發現之前,
石墨烯既是最薄的材料,也是最強韌的材料,斷裂強度比最好的鋼材還要高200倍。同時它又有很好的彈性,拉伸幅度能達到自身尺寸的20%。它是目前自然界最薄、強度最高的材料,如果用一塊面積1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的貓。
石墨烯目前最有潛力的應用是成為
硅的替代品,制造超微型晶體管,用來生產未來的超級計算機。用石墨烯取代硅,計算機處理器的運行速度將會快數百倍。
另外,石墨烯幾乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的氣體原子(氫原子)也無法穿透。這些特征使得它非常適合作為透明電子產品的原料,如透明的觸摸顯示屏、發光板和
太陽能電池板。
作為目前發現的最薄、強度最大、導電導熱性能最強的一種新型納米材料,石墨烯被稱為“黑金”,是“新材料之王”,科學家甚至預言石墨烯將“徹底改變21世紀”。極有可能掀起一場席卷全球的顛覆性新技術新產業革命。
實際上石墨烯本來就存在于自然界,只是難以剝離出單層結構。石墨烯一層層疊起來就是石墨,厚1毫米的石墨大約包含300萬層石墨烯。鉛筆在紙上輕輕劃過,留下的痕跡就可能是幾層甚至僅僅一層石墨烯。
石墨烯在實驗室中是在2004年,當時,英國
曼徹斯特大學的兩位科學家安德烈·杰姆和克斯特亞·諾沃消洛夫發現他們能用一種非常簡單的方法得到越來越薄的石墨薄片。他們從
高定向熱解石墨中剝離出石墨片,然后將薄片的兩面粘在一種特殊的膠帶上,撕開膠帶,就能把
石墨片一分為二。不斷地這樣操作,于是薄片越來越薄,最后,他們得到了僅由一層碳原子構成的薄片,這就是石墨烯。這以后,制備石墨烯的新方法層出不窮,經過5年的發展,人們發現,將石墨烯帶入工業化生產的領域已為時不遠了。因此,在隨后三年內,
安德烈·蓋姆和
康斯坦丁·諾沃肖洛夫在單層和雙層石墨烯體系中分別發現了整數量子霍爾效應及常溫條件下的量子霍爾效應,他們也因此獲得2010年度
諾貝爾物理學獎。
在發現石墨烯以前,大多數物理學家認為,熱力學漲落不允許任何二維晶體在有限溫度下存在。所以,它的發現立即震撼了凝聚體物理學學術界。雖然理論和實驗界都認為完美的二維結構無法在非絕對零度穩定存在,但是單層石墨烯在實驗中被制備出來。
制備石墨烯常見的方法為機械剝離法、氧化還原法、SiC外延生長法和化學
氣相沉積法(CVD)。
機械剝離法是利用物體與石墨烯之間的摩擦和相對運動,得到石墨烯薄層材料的方法。這種方法操作簡單,得到的石墨烯通常保持著完整的晶體結構,但是得到的片層小,生產效率低。
氧化還原法是通過將石墨氧化,增大石墨層之間的間距,再通過物理方法將其分離,最后通過化學法還原,得到石墨烯的方法。這種方法操作簡單,產量高,但是產品質量較低。
SiC外延法是通過在超高真空的高溫環境下,使硅原子升華脫離材料,剩下的C原子通過自組形式重構,從而得到基于SiC襯底的石墨烯。這種方法可以獲得高質量的石墨烯,但是這種方法對設備要求較高。
CVD是目前最有可能實現工業化制備高質量、大面積石墨烯的方法。這種方法制備的石墨烯具有面積大和質量高的特點,但現階段成本較高,工藝條件還需進一步完善。
單層石墨烯
單層石墨烯(Graphene):指由一層以苯環結構(即六角形蜂巢結構)周期性緊密堆積的碳原子構成的一種二維碳材料。
雙層石墨烯
雙層石墨烯(Bilayer or double-layer graphene):指由兩層以苯環結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛構成的一種二維碳材料。
少層石墨烯
少層石墨烯(Few-layer):指由3-10層以苯環結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛構成的一種二維碳材料。
多層或厚層石墨烯
多層或厚層石墨烯(multi-layer graphene):指厚度在10層以上10nm以下苯環結構(即六角形蜂巢結構)周期性緊密堆積的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛構成的一種二維碳材料。